Anyone who drives along Interstate 35 in Texas between Waco and Dallas
or Fort Worth will pass through West, a small rural Texas town with a Czech
heritage that was known, at least until last week, mainly for the pastries that
you can buy at a bakery right next to the Interstate. It would not have surprised me to learn that a distributor
of fertilizers to local farmers operated on the east edge of town, nor that one
of the kinds of fertilizer sold by the dealer was ammonium nitrate. But when I learned of the tremendous
explosion that killed at least 14 people, injured hundreds, and destroyed a
good fraction of West’s built environment last Wednesday evening, April 17, my
sadness was tinged with the knowledge that in warehousing large quantities of
ammonium nitrate fertilizer, the firm was taking a chance that such a thing
could happen.
Ammonium nitrate is a curious chemical. A “molecule” consists of an ammonium ion (four hydrogens
arranged around a nitrogen) with a positive charge and a nitrate ion (a
nitrogen atom surrounded by three oxygen atoms) with a negative charge. At room temperature, it is a solid, but
its constituent elements are all gases.
And the only thing holding it together are the opposite charges retained
by the ammonium and nitrate ions.
When heated gently in an open container, it breaks down into nitrous
oxide (laughing gas) and water.
But when it is in contact with easily oxidized materials, such as the
fertilizer urea or even some metals, heating can cause it to release oxygen,
which greatly increases the heat of the reaction and can lead to a fire. When confined by walls or even the
pressure of a high stack of the material itself, burning ammonium nitrate can
self-detonate. A detonation is an
explosive shock wave that travels at very high speed through a volume of
material, and differs from burning as traveling by jet aircraft differs from
walking. This is apparently what
happened a little after seven in the evening at the burning warehouse in West.
A back-of-the-envelope calculation of the power of the resulting blast
can be done by beginning with an aerial view of the fertilizer plant before the
explosion, which is still available on Google Maps. Comparison with views of the devastated explosion site
indicate that the explosion was probably centered in a large, flat warehouse
building that appeared to be one story high and measured about 60 feet by 110
feet. If we assume it was packed
to a height of eight feet with ammonium nitrate (not an unreasonable assumption
as distributors stock up for the summer growing season), the total mass of
chemical in that building could have been as much as two thousand tons. Pure ammonium nitrate has about a
fourth of the energy content per pound as TNT. Still, given these rough assumptions, if the whole mass went
off at once, which it appears to have done, the force of the explosion could
have been as great as a thousand tons of TNT, or one kiloton.
You may have run across the word “kiloton” in reference to nuclear
explosions. While there were
fortunately no nuclear weapons or radioactive materials involved in the West
explosion, the nuclear weapon dropped on Hiroshima at the end of World War II
had a yield of only about 16 kilotons of TNT. So what happened in West was one-sixteenth of a small
nuclear bomb, in terms of destructive power. No wonder it showed up on seismographs as a magnitude-2
earthquake.
If ammonium nitrate is so dangerous, why isn’t handling and use of it
more regulated? That’s a good
question. The Wikipedia article on
ammonium nitrate notes that in 2005, Australia passed a Dangerous Goods
Regulation law which requires a license for the sale or use of the
material. But if even licensed
users store huge quantities of the stuff in places where it can catch fire and
explode, licensing would not prevent disasters such as the one that happened to
West last week, or Texas City in 1947, or over twenty other occasions since
1916 listed in a separate Wikipedia article devoted to ammonium nitrate
disasters.
Chemical companies that deal routinely with explosives know how to
handle these materials so that when they explode, the explosions are limited to
a small area that is sacrificed in order to protect the rest of the property
and lives involved. You simply
restrict the amount of explosive allowed in one place to a maximum amount that
you can afford to blow up, and then physically isolate it from all other
concentrations of explosive in a series of small bunkers. If the fertilizer stored in the West
Fertilizer Company plant had been dispersed in this way, perhaps one of the
small storage areas might have blown up, but with sufficient earth-berm
isolation and other precautions, the explosion would not have spread.
That is small comfort for the survivors in West. And as a practical matter, you can
handle ammonium nitrate in an ordinary way without special precautions, as it
is done thousands of times each year around the world, and most of the time,
nothing bad will happen. If the
West firm had been required to invest in the additional storage facilities
needed to treat ammonium nitrate as a true explosive, it would have gone out of
business for sure. (News reports
indicate the firm nearly went bankrupt a few years ago and was rescued at the
last minute by the present owner.)
So we face the dilemma of either requiring a huge investment in safety
facilities on the part of fertilizer manufacturers and retailers everywhere to
prevent disasters like West, or we leave things as they are and wait for the
next one.
A compromise solution might be the rigorous training of anyone who
deals with ammonium nitrate, enforced by a licensing law similar to the one on
Australia. This would include
mandatory evacuations based on scientific calculations of a worst-case
explosion whenever a fire occurs near large quantities of the stuff. While regulations like this would not
have prevented the damage caused by the West detonation, it could have reduced
the death toll.
Our thoughts and prayers are with the residents of West, whose tragic
experience may lead to changes that at least mitigate the dangers involved in
dealing with ammonium nitrate in the future.
Sources: I referred to the Wikipedia articles “Energy
density,” “Ammonium nitrate” and “Ammonium nitrate disasters” as well as Google
maps of the vicinity and photographs in various publications of the disaster
site, and the book The Science of High
Explosives by Melvin A. Cook (Reinhold, 1958).
No comments:
Post a Comment