Monday, October 13, 2014

Imagining Geoengineering

Okay, suppose some of the most extreme voices warning of global warming are right.  Suppose we really do face the inundation of much of the world's coastlines in a generation or two.  Even if, starting tomorrow, nobody ever burned a drop or a gram of fossil fuel ever again, the carbon dioxide now in the atmosphere might take hundreds of years to fall to pre-industrial levels.  So simply implementing restrictions on fossil fuels to reduce carbon-dioxide levels may not do the job fast enough.  What do we do in the meantime?  To use an automotive analogy, if you're going too fast and you see that the road ahead of you ends in a cliff, it might not be sufficient simply to take your foot off the gas.  You might actually have to apply the brakes.  David Keith says we ought to at least talk about applying the global-warming brakes.  But the question I have is, how could it ever get beyond talk?

Keith is a professor with appointments at both the Harvard Kennedy School, where he teaches public policy, and Harvard's School of Engineering and Applied Sciences.  An environmental engineer by training, Keith thinks that "geoengineering" ought to be considered along with reductions in fossil-fuel consumption as a way to reduce the effects of carbon dioxide in the atmosphere.  Geoengineering refers to intentional efforts to manipulate the climate.  So far, the only moderately successful geoengineering projects have been cloud-seeding efforts that arguably increased rainfall in some areas.  But Keith is talking about a worldwide effort to do something that will counteract global warming by artificially cooling the planet somehow.

Interviewed last March by the CBC (Keith is Canadian), he admitted that ideas such as spreading small sulfur particles in the stratosphere to reflect solar radiation as a way of countering global warming are a "brutally ugly technical fix."  But he thinks such geoengineering solutions should be on the table, rather than brushed aside scornfully, as they are by many environmental activists.

Let's try to imagine how such a geoengineering fix would work, not just technically, but politically.  Many of the geoengineering solutions that have been posed are not terribly expensive, globally speaking.  We are talking about industrial quantities of sulfur or other chemicals dispersed in the upper atmosphere, but the cost in terms of the global economy is miniscule.  There is no question that such a project could be mounted by even one well-prepared industrial nation.  The question I'd like to examine is:  could the nations of the world ever reach a consensus on what geoengineering solution to adopt?

If we examine the track record of united global action on the main cause of the carbon-dioxide increase, namely the use of fossil fuels, history is not encouraging.  The most significant effort in this direction is the Kyoto Protocol, adopted in 1997.  It is technically an extension of a 1995 UN agreement that parties signing it will reduce their emissions of greenhouse gases in accordance with certain goals spelled out in the document.  While 192 countries signed the accord, some of the most significant producers of greenhouse gases either did not participate at all (e. g. the U. S. A., China, India) or have not met their targets (e. g. New Zealand). 

The only global environmental agreement I can recall that actually worked was the way we kept chlorinated fluorocarbons (CFCs) from destroying the ozone layer.  CFCs were once used widely as refrigerant fluids (e. g. under the trademark "Freon"), but in the 1970s, scientists figured out that (a) these compounds lasted for a long time in the atmosphere and (b) they catalyzed the destruction of the important ozone layer in the stratosphere, which protects us from harmful UV radiation from the sun.  The Montreal Protocol, which went into effect in 1989, set its signatories on a path to eliminating the production of new CFCs and phasing out their use by finding alternatives.  By and large, the Montreal Protocol is a success story in international technical agreements, because most of the industrialized world signed on and actually did what they agreed to do.

Why can't we get such cooperation with the global-warming issue?  The simple answer is, it would cost more.  Telling the world economy to give up CFCs was like telling a dieter to give up the tutti-frutti milkshake he has every Shrove Tuesday.  CFCs were a minor part of the global economy compared to fossil fuels.  If we accept the most radical recommendations of those alarmed about global warming and implement restrictions as fast as they want us to, well, the point is, the world won't do it without something approaching a global police state.  Developing nations such as China and India will not willingly forego the advantages of wider use of fossil fuels to grow their economies.  It would take a world war and dictatorial economic domination by a single global-warming-prevention entity to make the world go on a fossil-fuel diet.  And that doesn't sound like a good tradeoff.

The thing that geoengineering proponents like David Keith have going for them is that many geoengineering proposals would cost a lot less than replacing fossil fuels with a sustainable alternative.  Whether geoengineering would work is another question, unfortunately even more complicated than the still-controversial question of exactly how bad climate change is going to get, and what adverse effects it will have in the future. 

Besides the technical issue of whether geoengineering would work, I think there is an esthetic or philosophical factor involved.  Many of those who advocate harsh restrictions on fossil-fuel use to avert further climate change seem to have bought into the "deep-green" assumption that humanity is really a net liability for Planet Earth.  Burning fossil fuels represents meddlesome tinkering with what Mother Nature was up to naturally, and geoengineering would be another step down that evil road of manipulating the environment.  Better we just fold our tents, globally and economically speaking, and go back to living off nuts and berries.  The trouble with that notion is that there would not be enough nuts and berries to go around unless we keep burning fossil fuels, or find an energy-equivalent alternative that won't bankrupt us.  Such an alternative is not yet at hand. 

I admire engineers like David Keith for thinking through important problems such as climate change to arrive at possible solutions that might actually work, at least technically.  Given the dismal track record of the Kyoto Protocol, the chances of arriving at a truly global accord to implement significant fossil-fuel reductions are vanishingly small.  If some of the more dire climate-change predictions come to pass, it might be easier to get international agreement on a geoengineering strategy than it would on fossil-fuel reductions, especially if the price is right.

Sources:  An article on David Keith's ideas about geoengineering appeared on March 29, 2014 on the Canadian Broadcasting Corporation's website  I also referred to Wikipedia articles on solar radiation management, the Kyoto Protocol, and chlorofluorocarbons.        

No comments:

Post a Comment