Monday, November 24, 2008

The Ethics of Financial Engineering

As I write this, the Dow-Jones Industrial Average is somewhere south of 8100, down 35% or more from its 2007 high and showing few signs of fatigue in its downward trek. General Motors hourly threatens to go bankrupt, credit markets are doing an imitation of the last Ice Age, and newspapers are running old pictures of soup lines during the Great Depression of the 1930s, I guess to get us used to what's coming. For such a young recession, it's already gotten plenty of publicity. But in all the finger-pointing about whose fault it was that we got into this mess, I have not read anyone who has addressed the question of what might be called economic and financial engineering, and the ethics associated with it.

I remember being surprised the first time I heard that a couple of our better electrical engineering graduates got high-paying jobs with a credit-card company, of all places. But I'm surprised no longer when I hear that present or former engineers often get hired by banks, brokerage firms, and other outfits that deal in highly technical and complex financial machinery. The attention to detail and problem-solving skills that engineers learn can be applied fruitfully to finance and securities trading as well as electronics, and the pay can be better, too. I call it "machinery" although in reality it's mostly software and rules devised by lawyers and technical types such as former engineers and physicists. But the complexity is there, and there is a good argument that such complexity played a significant role in the current recession.

From what little I do understand about the situation, when all sorts of home loans (the good, the bad, and the ugly) were bundled together by means of software-mediated deals, they sold like two-dollar Miley Cyrus concert tickets at a middle school full of teenage girls. To make things more complicated still, financial institutions started selling things called "credit default swaps," which were some sort of unregulated insurance against the eventuality of loans turning bad. My point is not to explain these things in all their gory details (which I couldn't even if I had to), but to show that computers and technical people who can keep track of these things, and figure out the rules by which they operated, played essential roles in this situation.

Before electronic computers became generally available, the most complex math a banker had to deal with was figuring out compound interest, and there were tables for that sort of thing. The complexity of a given financial deal was limited by, among other things, the labor it would take to figure it out. If somebody came up with some kind of security that came with a formula that would take three women punching calculators for three days to figure out, nobody would have bought it.

Not so today. If you took all the computers away from today's traders, the whole system would come to an instant halt, not only because computers are the medium of communication (so-called "electronic trading" is involved in virtually all transactions), but because a lot of trades are initiated by automatic triggers that write buy and sell orders based on electronically reported prices.

This is not to say that speculative booms and busts are possible only when you have engineer types and horribly complicated automated trading involved. The classic textbook example of a boom-and-bust phenomenon was the tulip-bulb mania of the early 1600s. Substitute tulip bulbs for bundled home mortgages, and you can see the same psychology at work: rising prices, a spreading perception that investing in tulip bulbs is a great way to make money fast, a few people made richer but only if they cash out early, and then alternate reality sets in: hey, we're only talking about tulip bulbs here! What's the big deal? And the crash follows, wiping out thousands of tulip-bulb plutocrats.

Engineers or technical people are not to blame for the mass psychology of crashes. But as they are often endowed with perhaps an above-average grasp of logic and what used to be called common sense, I would hope that they could serve as a kind of reality check or brake on things when matters really get out of hand. Of course, engineers working for a firm whose whole existence is based on complex derivatives or credit-default swaps or tulip-bulb futures, are not going to have long stable careers in such firms if they start questioning the fundamental assumptions on which the operation is based. On the other hand, it's looking like they won't have long stable careers anyway, now that many of the outfits are going broke.

I have no illusions that many of my readers are working in the financial industry. But if you ever happen to end up either working in it or dealing with it, remember that when a deal gets so complicated and computerized that even the people who are buying and selling it don't really understand it—then maybe it's too complicated. Complexity in the service of necessity is one thing, but complexity simply to confuse the buyer is wrong. And it looks like there were a lot of confused buyers out there who have lost faith in their vendors, to the detriment of the economy as a whole.

1 comment:

  1. To make things more complicated still, financial institutions started selling things called "credit default swaps," which were some sort of unregulated insurance against the eventuality of loans turning bad.