Sunday, December 25, 2016

Clifford Furnas and the Clouded Crystal Ball

In 1936, during the depths of the Great Depression, a professor of physical chemistry at Yale named Clifford C. Furnas published a book in which he tried to anticipate the next great advances in science and engineering during the following century.  His book was inspired by a visit he made to the Chicago World's Fair in 1933, otherwise known as the "Century of Progress Exposition," which marked the 100-year anniversary of the founding of Chicago.  A lot of the technical exhibits that were designed to show how the world of tomorrow would be better than the depression of today didn't work properly, and so he went home and surveyed the state of science, engineering, and technology and made his best guesses as to how things would be by 2033, appropriately entitling it The Next Hundred Years.

My interest isn't so much in the accuracy of his technical predictions as in his expectations for what the trend of automation would yield for the economy and the working life of the average citizen.  It was already obvious by 1933 that a lot of jobs formerly done partly or wholly by hand up to then would be performed by machines or even robots in the future.  But what Furnas missed, along with nearly every other prognosticator up to the end of World War II, was the rise of the electronic computer, computer networking, and the growth in Internet-based economic activity.  And without the computer, modern robotics would be impossible, because without digital control systems (now including artificial intelligence), a robot can't do anything much more than act as a power-assist to a human being.

What we're talking about is the rise in what economists call productivity:  the economic output of a nation divided by the number of hours worked.  One person using a small lathe and a few hand tools can build a watch in maybe a few dozen hours, depending on what they start with.  But one person at the controls of an otherwise fully automated watch factory can make hundreds or thousands of watches per hour.  And Furnas was right in his prediction that advances in automation would (a) greatly increase the productivity of the average worker, and (b) render obsolete entire classes of jobs that previously employed millions of people. 

Where he went wrong was his prediction about what the result of these changes would be.

In Furnas's view, the average man (he barely discussed women at all), when faced with a choice of working 40 or 50 hours a week for ever-increasing pay, or else getting paid the same wages for less and less work, would choose to work less and get paid the same amount for it.  Consequently, the great challenge he foresaw for the future was to find things for people to do with all their spare time, now that their jobs could be done in as little as one or two hours a day.  He summarized the difficulty thus:  "Our problem will be to keep the citizenry on even keel while they have a wealth of time on their hands, for certainly a society steeped in mere idleness will soon lose its moral fiber, its material possessions and its reasons for existence." 

Why didn't things turn out that way?  Why isn't the U. S. a peaceful country full of debating societies, painting groups, and volunteer choirs, instead of harboring an increasingly divided populace in which some better-educated folks live a life of relative freedom and interesting work, while most people without advanced degrees work longer and longer hours in uncertain dead-end jobs (sometimes two or three jobs at once) and feel they can barely get by?  And don't forget the growing class of working-age men who have simply resigned from the workforce altogether and spend their days playing video games and in other forms of, in Furnas's words, "mere idleness."

A complete answer to these questions would require a book, or several books by a group of experts with talents that I lack.  But in my 300 words or so remaining, I'll hazard a few guesses.

One answer will sound paradoxical:  the rise in the standard of living.  The phrase "keeping up with the Joneses" captures some of this idea.  For Furnas's vision of the leisure class to come to pass, it wouldn't do for just a few people to choose shorter working hours over more pay—most of the country would have to do it.  And in the hyper-competitive international economic arena, a country in which most of its working people work only two hours a day would lag behind countries where 40 or 50 hours a week was the norm. 

Another answer is that people are, frankly, greedy.  And greed, at least of the mildly acquisitive type, is the engine that fuels advertising and consumer economies such as in the U. S. and most other industrialized nations these days.  There are a few people who choose to live on next to nothing and cut themselves off from the grid, but most of us regard them as eccentrics at best and dangerous at worst. 

A third factor is what I call "building-code creep."  If you attempted to build a house today in the way a modestly-priced house was built in 1930, you would be violating nearly every building code in the book.  Where's the third wire for grounding the outlets?  Where's your insulation, air conditioning, smoke alarms?  What's all this lead paint doing here?  That gas water heater has no automatic flameout-protection valve.  In thousands of  ways that have made life safer and more convenient, we have changed the rules of material life so that it costs a great deal more to live simply than it used to.  In certain rural parts of the country, most if not all of these things can be skipped, but at the price of living dangerously.

For a variety of reasons, we seem to be entering a period in which increasing numbers of people in the U. S. choose to live without jobs.  But most of them don't seem to be happy about it, and I think Furnas was on to something when he expressed concern about the deteriorating moral fiber of a nation where idleness becomes a way of life for many people.  The key, if there is one, lies in the phrase "reasons for existence," but that is a topic for another blog.

Sources:  Clifford C. Furnas's The Next Hundred Years was published in 1936 by Reynal & Hitchcock, New York.  The quotation about keeping citizens on an even keel is from p. 367.  I previously referred to this book in my blog on Sept. 23, 2013, "Engineers and Technological Unemployment:  What Are People For?"

Monday, December 19, 2016

Are We Ready For an AI World?

The other day I was making some hotel reservations, and set them up with two different hotel chains.  One is universally pet-friendly (we often travel with a dog), and you can call the hotel you want to stay at and talk with the desk clerk directly to make your reservation.  The clerk gets into their reservation system and takes your information and usually there's no problem, although if you call at a busy time it can be a little stressful on the clerk. 

The other chain makes all phone reservations through a centralized phone system—if you call the individual motel, the desk clerk transfers you to the same reservation number you can call directly.  Recently this chain transitioned to a computerized voice-recognition system—your voice is unheard by human ears when you dial the number.  It didn't go well.

I suppose those familiar with the robotic phone-tree industry could name the company that makes this system by the way it sounds.  It has a friendly female voice saying, "Okay, what can we do for you?  Tell me if you want to make a reservation," etc.  At first I hoped I'd eventually get to talk with a live human, because my experience with these robot voices has been mixed at best.  Maybe it's my tone of voice, maybe it's my Southern background, but unless the computer is asking for simple yes-or-no answers, I don't have much luck with them. 

It asked me for the place I wanted to stay and what day and how many nights.  I tried to tell it—twice, in fact—but all I got back was this peculiar fast clicking ("pip-pop-pip-pop") which I have to believe is what the system puts on the line instead of Muzak while it's trying to puzzle out what you said, and then it asked the same question all over again.  Finally I hung up and used the chain's website to make the reservation, which may be what they want people to do anyway—I'm sure it's a lot less trouble to them than their robot telephone operators. 

This is an up-close and personal encounter with something that is only going to get worse—or better, depending on your point of view—in the future.  I'm talking about the replacement of people with technology in a wide variety of jobs.  In a recent issue of The New Yorker magazine, Elizabeth Kolbert reviews a number of books concerned with the recent advances in artificial intelligence (AI), and the effects this is going to have on the the job market, the economy, and society in general. 

This isn't going to happen overnight.  Paradoxically, it's easier to program a computer to diagnose certain types of diseases with expert systems than it is to teach one how to fold towels.  Kolbert cites an experiment at U. C. Berkeley with a robot that learned to fold a towel—after practicing, it got its time down to twenty-five minutes per towel.  In that regard, at least, Rosie the Robot isn't going to replace hotel housemaids any time soon. 

On the other hand, if you work in a phone-answering "boiler room," you have reason to be worried, although my own experience with the robotic reservation clerk shows there is still a place for humans on the other end of the line.  Kolbert classifies jobs into four types:  manual routine jobs (e. g. folding towels or working on an assembly line), cognitive routine jobs (e. g. keeping track of a warehouse inventory), manual nonroutine jobs (e. g. home health care or brain surgery), and cognitive nonroutine jobs (e. g. developing a new AI system).  Both types of routine jobs, where you can basically write an algorithm about what to do in any given situation, are ripest for replacement by robots and AI software.

The fear that humans will lose their jobs to machines goes back at least to the 1700s, when mechanical looms and spinning jennies began to replace weavers and the one-person spinning wheel.  But until recently, industrialization produced at least as many new jobs as the old ones it eliminated, if not more. 

The problem now is that many new firms that attract billions in capital now operate with essentially nobody.  Kolbert cites an extreme example:  the messaging firm Whatsapp, with its fifty-five employees, was bought by Facebook in 2014 for twenty-two billion dollars.  That's four hundred million dollars per employee.  When I told my wife about it, she said, "Well, I hope they didn't lose their jobs when they got bought out."  I hope not either.  Maybe the janitor did, but you can rest assured that some of that twenty-two billion found its way into the pockets of at least a few of those people. 

Leaving lottery-like occurrences aside, the point is that both software-based and manufacturing enterprises are finding ways to do what they need to do with fewer and fewer warm bodies who are not in the upper echelon of the cognitive non-routine class.  The few people they still need—lawyers, managers, creative people, and other "symbolic manipulators," in George Gilder's phrase—may form the future ruling class of what software developer Martin Ford calls "techno-feudalism." 

But even feudal lords needed their serfs to work their lands.  The ruling class of the future will have no need for anyone not in their class, except as consumers.  Most of the authorities Kolbert cites figure that the best we can do with the vast majority of us ordinary mortals who have no aptitude for programming, management, the law, or high finance, is to pension us off with guaranteed incomes, or something that amounts to that, and hope we don't decide to up and storm the castle some day.

Next week I plan to look at an alternate view of the same problem, written during the depths of the Great Depression, but I've run out of space today.  In the meantime, if you have a job, be grateful for it, and share some of what you have with those less fortunate.   

Sources:  Elizabeth Kolbert's piece "Rage Against the Machine:  Will Robots Take Your Job?" begins on p. 114 of the Dec. 19 & 26, 2016 issue of The New Yorker magazine.

Monday, December 12, 2016

Hot-Air Ballooning Needs Down-to-Earth Regulation

On the morning of Saturday, July 30, 2016, a group of sixteen people gathered in a Wal-Mart parking lot in Central Texas before sunrise for what they hoped would be a thrilling and memorable experience.  Several of them were married couples or newlyweds.  Ross and Sandra Chalk were 60 and 55 but recently married, while John and Stacee Gore were both in their 20s and celebrating their third wedding anniversary that week.  Others showed up as a result of a birthday present given by a loving friend or relative.  All fifteen passengers were trusting balloon pilot Alfred Nichols to take them up in his hot-air balloon, give them a wonderful experience, and return them safely to earth.  But two out of three wasn't going to be good enough.

As often happens on summer mornings in this part of Texas, low clouds drifted through the sky.  But after a short delay, Nichols decided to fly anyway, and around 7 AM, shortly after sunrise, the balloon took off with fifteen passengers and the pilot.

Photos taken during the flight show patchy clouds and fog beneath the balloon.  Evidently Nichols decided to land near Maxwell, Texas, about forty miles southeast of Austin.  Utility-company records show that at 7:42 AM, something happened to trip a protective relay on a high-voltage transmission line crossing a cornfield.  First responders soon discovered that the balloon became entangled in the transmission line, caught fire, and crashed, killing all sixteen people aboard, including Nichols.  This was the worst balloon crash ever in the U. S., in terms of fatalities, and subsequent investigations have revealed some unsavory facts about Nichols and about the industry in general.

At a hearing held Friday, Dec. 9 in Washington, D. C., the National Transportation Safety Board (NTSB) presented documentation and evidence about the crash, which is still under investigation.  Toxicology reports show that Nichols had seven different prescription drugs at detectible levels in his body.  Prior to the crash, he had been convicted in Missouri of four charges of driving while intoxicated, and at the time of the crash was not allowed to drive a car in Texas.  Nevertheless, he held a valid commercial balloon pilot certificate.  Weather reports from the day of the crash show that the cloud ceiling had lowered to only 700 feet at the time of launch, and other balloon pilots present at the hearing agreed that they would not have flown under such conditions.  Nichols appears to have been a disaster waiting to happen.

We may be seeing a pattern that is all too familiar:  a new activity or business arises with no or minimal regulation, a tragedy results in headline-grabbing deaths, and only after the tragedy laws are amended to more properly regulate the activity or business.  Although hot-air balloons were the first form of human flight to be invented back in the 1700s, balloon rides were so infrequent, and the number of people involved so small, that a light-handed regulatory environment seemed to have sufficed for decades.  But this tragedy may mark the point at which regulations will catch up with the larger volume of customers taking rides in larger balloons that present a greater danger to more people than ever. 

The Federal Aviation Administration (FAA), recognizing these dangers, has established regulations for commercial hot-air balloon pilots, and makes them undergo rigorous tests, both on paper and practical ones in a working balloon.  But beyond that, pilots are largely left on their own to follow the elaborate advice in the 252-page Balloon Flying Handbook issued by the FAA.  Most commercial balloon operations are small, like the one-man show that Nichols ran, and lack the natural supervision that working for even a small charter-plane company would entail.  The solo nature of balloon flying, plus the fact that the same person piloting the balloon is probably the one who stands to profit the most if a full-capacity flight goes forward in hazardous conditions, means that there are built-in conflicts of interest in this type of flying that are not faced by pilots who work for major airlines, for example.  For this reason alone, one would hope that regulatory oversight would be at least as rigorous as it is for commercial charter-flight pilots of fixed-wing aircraft, not less.  As it is, however, there are not even any reliable statistics on how many flight hours are logged by commercial balloon pilots in the U. S., as some public-health experts researching the problem found in 2013. 

Part of the problem is that the regulatory question is caught in a turf war between the NTSB, which investigates transportation accidents of all kinds, and the FAA, which issues flight safety regulations and requirements for both flight equipment and pilots.  The NTSB has been pushing for tighter balloon-pilot regulations for years, but the FAA has so far refused to act, trusting to private balloon-pilot organizations to do self-enforcement.  In Nichols' case, at least, this kind of enforcement failed.

It's all very well to publish books of regulations and advice, but if enforcement is left solely up to the person who also stands to profit personally if the rules are flouted, the FAA is guilty of putting too much trust in fallible human nature.  Something along the lines of periodic background checks and even surprise drug tests should be implemented for commercial hot-air balloonists who take the lives of others into their hands.  Commercial balloons can carry as many as 32 passengers, and newspaper reports have pointed out that many charter and common-carrier fixed-wing aircraft don't carry that many passengers.  The bottom-line purpose of flight regulation is to protect the lives of passengers, and the FAA's creaky system for doing that for hot-air balloon riders crashed along with the sixteen people who lost their lives on that summer day.

Balloons tend to be associated in the public mind with fun, frivolity, and pleasant times.  The balloon Nichols was piloting had a big smiley face with sunglasses painted on it.  If people are going to continue to ride balloons for pleasure, we should make sure that they aren't putting their lives into the hands of someone who can't drive them to the takeoff point because of drunk-driving convictions.  I hope the FAA and the NTSB can work out their differences to revise hot-air ballooning regulations and policies so that the tragic crash last summer is the last one of that magnitude for a long, long time.

Sources:  I referred to reports of the NTSB hearing held Dec. 9, 2016 on the San Antonio Express-News website at and KXAN-TV at  The paper "Hot-Air Balloon Tours:  Crash Epidemiology in the United States, 2000-2011" by S.-B. Ballard, L. P. Beaty, and S. P. Baker, was published in Aviation Space and Environmental Medicine in 2013 in vol. 84, pp. 1172-1177, and is available online at 
  The FAA's "Balloon Flying Handbook" is available as a download at

Monday, December 05, 2016

How Public Utilities Became Public Utilities

The idea of a "public utility" is firmly entrenched in the minds of most people who live in industrialized countries today.  Things like the water supply, electric power, and more recent developments such as Internet service are all considered well-nigh essential to modern life.  Most people would probably agree that because of this, governments have the right to regulate public utilities in a way that would be regarded as heavy-handed or illegal if the firm involved was making dental floss, for example, instead of providing a necessity like clean water or electric power.  But I, for one, never stopped to wonder where the phrase came from until I read a historical article by Adam Plaiss called "From Natural Monopoly to Public Utility."

Plaiss traces the origin of the phrase all the way back to philosopher John Stuart Mill, who used it in a different sense, as a modifier rather than a noun.  Mill referred to canals and bazaars as works useful to the general public—that is, works of "public utility."  But the concept that a system of waterworks or communications could be called a public utility dates back only to the late 1800s, when the related concept of a natural monopoly began to influence thinkers during what came to be called the Progressive Era.

Progressives enthused about applying relatively new social sciences such as economics to pressing public problems such as the exploitation of the working classes by private monopolistic companies.  One of the first professionally-trained economists in the U. S. was Richard T. Ely, who obtained his doctorate from Germany and came back to join the effort to apply scientific approaches to economics as a way of "bring[ing] about a better world."  And during a period in the U. S. when utility companies selling gas, water, electricity, and telephone service were rapidly expanding, Ely examined the question of a natural monopoly.  Was there such a thing, and if so, what were its characteristics?

Around 1888, Ely came up with a set of criteria that made an entity a natural monopoly.  The thing it supplied had to be a necessity, like water.  The area it served had to be geographically distinct.  And there could be no wasteful duplication of service within the area.  A classic example of what Ely called a natural monopoly was a water-supply company.  The heavy expense of laying pipes and distribution networks made it virtually impossible for there to be meaningful competition between two rival water-supply companies for the same customers.  So if a service met Ely's criteria for being a natural monopoly, Ely believed it was the public's right to regulate that service closely. 

Perceptive and thoughtful as Ely was, Plaiss points out that he had a blind spot when it came to the root cause of a natural monopoly.  Ely attributed the cause to the nature of the hardware infrastructure itself.  But the idea that only private capital could afford to build utility services was so universally accepted at the time, that Ely failed to see the contribution of the economic background, so to speak, of late 1800s America, to the existence of natural monopolies.  It is only a slight exaggeration to say that Ely believed technology caused natural monopolies, not people. 

And because Ely saw the creation of natural monopolies as "technologically determined," as historians put it, he felt it was necessary for all owners of such monopolies to be subject to government regulation.  Otherwise, horrors such as Plaiss cites in his paper might come about, and did in fact happen in the 1880s and 1890s.  For example, privately-owned water companies in cities such as Houston and Seattle refused to extend their networks to newer parts of the cities, hampering fire departments which had no water hydrants to connect to in case of fire.  And a typhoid-fever outbreak in Superior, Wisconsin was caused by impure water provided by a private water company.  Thus, Ely believed that effective governmental control, if not outright ownership, of natural monopolies was necessary to prevent the exploitation of the masses that would result from unregulated private ownership.

After Ely published his thoughts along these lines, a Progressive journalist named Henry Call first used the phrase "public utility" as a noun in 1895, meaning by it any organization that enjoys what Ely would call a natural monopoly in the delivering of what was considered a modern necessity.  Call widened this category to include "banks, railroads, telegraphs," and municipal services such as water and gas.  In the coming years, as cities and states established regulatory commissions and agencies for such utilities, the public got used to the idea that certain types of business could be categorized as a public utility, and therefore subjected to regulation.  Many states passed regulatory laws for public utilities in the twenty years or so after 1900, which saw the height of the Progressive Era.  And although the free-market trends of the 1920s put a damper on further attempts at regulation, the distress of the Great Depression renewed public enthusiasm for government controls on all sorts of businesses that looked like public utilities.  The establishment of the Federal Communications Commission in 1933 was square in the tradition of regulating public utilities such as the air waves, for example. 

Since the Progressive Era, the scales of regulation have swung back and forth.  As late as the 1970s, airlines, the telephone system, and electric utilities in the U. S. were all closely-regulated and rather dull businesses, guaranteed an annual profit by their regulatory agencies, but not encouraged to do anything rash or speculative.  By and large, this situation produced stability and profitability, but discouraged technological innovation.  The spate of deregulation that began in the 1980s and continues largely to this day contributed to an explosion of new communications technologies—cable TV, mobile phones, and the Internet, to mention only a few—but has arguably had its downsides, as many smaller cities lost air service altogether and the deregulated electric-power market was gamed by near-criminal enterprises such as Enron. 

With at least the hope of some fresh winds blowing through Washington these days, we may see a swing of the regulatory pendulum back toward tighter controls in some services, or looser ones, depending on whether the interests of the supposedly downtrodden public or of the wealthy owners of public utilities win out. 

But whatever happens, we will do well to remember that the idea of a public utility is only about 130 years old, and its definition has twisted and turned with the political winds of the times in which it was used.

Sources: "From natural monopoly to public utility: technological determinism and the political economy of infrastructure in progressive-era America," by Adam Plaiss, appeared in the Society for the History of Technology journal Technology and Culture (Oct. 2016, vol. 57, no. 4, pp. 806-830).

Monday, November 28, 2016

Driving While Online: Does the NHTSA Know Best?

Many generations of technology ago—that is to say, in the 1950s—there was a popular TV show called "Father Knows Best," starring Robert Young as the father of four children whose escapades and misfortunes always wound up with the kids having a talk with Daddy.  When this happened, you knew the final commercial break was coming up and everything would be tied up neatly in a few more minutes. 

Real family life in the 1950s wasn't as easy to fix as "Father Knows Best" portrayed, and neither is the problem of drivers getting distracted by portable devices such as mobile phones, tablets, and so on.  Some observers are attributing the recent rise in per-mile auto fatalities in the U. S. mainly to electronic distractions, and the U. S. National Highway Transportation Safety Administration (NHTSA) has a Department of Transportation (DOT) that has recently issued a draft set of "guidelines" for makers of electronic devices and automotive manufacturers to follow in order to address this problem.

Everybody admits there's a real problem.  If you've driven more than a few hours in rush-hour traffic in any major city, you've probably seen people doing things at the wheel that you can't believe they're doing, like texting or studying something on the car seat, even watching videos.  The question is what to do about it.

Lots of municipalities have tried to attack the problem by passing a no-hand-held-device-use ordinance for drivers, but enforcing such a thing is not something that highway patrol officers get real excited about, and the consensus is that these ordinances have not made a big dent in the problem.

So on Nov. 23, the NHTSA announced a draft of guidelines for makers of portable devices:  mobile phones, tablets, GPS display systems, you name it.  Two of the new concepts that these guidelines, if followed, would introduce to the driving public are "pairing" and "Driver Mode."

Pairing refers to an electronic connection between the portable device and the vehicle's built-in displays and controls.  Historically, the automakers have taken the NHTSA's word seriously regarding its recommendations for how to incorporate safety features in cars.  Although guidelines do not have the force of law, they can become law if Congress so chooses, and so many safety features such as seat belts and air bags showed up in cars as options before they were made mandatory.  In an earlier set of guidelines, the NHTSA set up rules for built-in instrumentation that would meet the agency's non-distraction requirements.  This involves things like not requiring the driver to glance away from the road for more than two seconds at a time and so on.  Their reference maximum distraction is tuning a radio manually.  Anything that distracts you more than that is basically regarded as too much.

Assuming the car's built-in controls and displays meet that criterion, pairing basically ports the portable device's controls to the car's built-in controls, which automatically meet the distraction guidelines already.  Maybe this sounds easy to a regulatory agency, but to this engineer, it sounds like a compatibility nightmare.  For pairing to work most of the time, every portable device that anyone is likely to use in a car will have to be able to communicate seamlessly with the wide variety of in-car systems, and be able to use those systems as a remote command and control point instead of the device's own controls and displays.  Maybe it can be made to work, but at this time it looks like a long shot.  And even if it does, you have the problem of those die-hards (such as yours truly) who cling to cars that are ten or fifteen years old and will never catch up to the latest technology.  (Those folks tend not to buy the latest portable devices either, but there are exceptions.)

Recognizing that pairing won't solve all the problems, the next step is Driver Mode.  This is an operational mode that goes into effect when the device figures out it's in a moving car.  Most new portable gizmos these days have built-in GPS systems, and so they can detect vehicle motion without much of a problem, although there might be issues with things like rides on a ferry boat and so on.  But those situations are rare enough to be negligible.  Once in Driver Mode, the device will refuse to let the user do things like texting, watching videos, and other activities that distract more than the reference tuning-the-radio operation would. 

One can foresee problems with Driver Mode as well.  The NHTSA says the user should be able to switch it off, and if this option is available, my guess is a lot of people will choose to disable Driver Mode altogether.  A determined distracted driver is going to find a way to text while driving no matter what, but the hope is that with these new measures in place—pairing and Driver Mode, mainly—the number of incidents of distracted driving will decrease, and we will resume our march to fewer traffic accidents that has been going on historically for the last several decades.

While the NHTSA deserves credit for encouraging device makers and car manufacturers to consider these ideas, it is not clear that there is a lot of enthusiasm for them, especially on the part of the mobile phone makers.  Automakers selling big-ticket cars can more easily adapt their products to the different requirements of different legal regimes in the U. S. and, say, France.  But piling a bunch of complicated pairing features onto phones sold only in the U. S. may not be an easy thing to convince phone makers to do.  Unless the U. S. initiative proves so popular that it becomes a global phenomenon, my guess is that mobile phone makers will resist building in the pairing function, especially because they would have to deal with a bewildering variety of host controls and displays in cars that would be hard to keep up with.

This issue is just one aspect of the huge upheaval in the auto industry that IT is causing right now.  Integrating cars with the Internet and portable devices, and making sure in-car displays work without causing wrecks, are only two of the many challenges that car makers face in this area.  Ironically, the move toward driverless cars, if successful, would render all the driver-distraction precautions pointless anyway.  If the driver's not doing anything, it's fine to let him or her be distracted.  That's Google's hope, anyway, in developing driverless cars:  less time paying attention to driving means more time on the Internet. 

The hope is that all the confusion will eventually settle down, or at least we will make the transitions to highly IT-intensive cars that are still at least as safe to drive as the older ones, if not safer—until we don't have to drive them at all.  But it looks like right now, at least, car makers will have to aim simultaneously at two targets that are moving in opposite directions. 

Sources:  An article summarizing the NHTSA proposed guidelines appeared in the San Jose Mercury-News on Nov. 23, 2016 at  The NHTSA press release about the guidelines can be found at, and the press release has a link to a .pdf file of the draft guidelines.

Monday, November 21, 2016

Can the Digital Future of Cars Save Lives and Time?

Despite all the positive changes the automobile has wrought, there are still a few big problems.  Leading the list is the rate of automotive fatalities and injuries—thousands of people die in car crashes every year, and many times that number are seriously injured.  Next on my list is the millions of person-hours wasted each year by people sitting in slow traffic—needlessly long commute times.  Add the carbon footprint of each car to that picture, and you can see plenty of room for improvement in the way we use machines to get around. 

At a one-day event called AutoMobilityLA held at the annual Los Angeles Auto show that runs through Nov. 27, New York Times reporter Tom Volek surveyed a number of digital technologies that promise to deal with all of these problems.  But as with many nice ideas, the difficulty is how we're going to get from here to there without making things worse before they get better.

Take self-driving cars, for instance.  According to Dr. Alexander Hans, a blogger at a site called, several studies have shown the potential for a self-driving taxi to perform the transportation work of six to ten privately-owned vehicles.  He also claims that the first widespread use of self-driving cars will be in fleets of self-driving taxis operating in restricted geographic areas such as densely populated districts of urban areas (think places like Singapore, where the first commercial self-driving taxi fleet debuted last August). 

Maybe these forecasts are right, but computer simulations leave out certain factors that may be decisive.  For example, there are lots of cabs in Manhattan, and there would be even more if the existing cab companies had not engaged in rent-seeking by restricting the total number of medallions available and fighting innovative unlicensed services such as Uber and Lyft.  But even if all the restrictions on cabs and taxi-like services in Manhattan were removed, I think you would still have a lot of cars clogging the streets, many of them privately owned. 

A city is a complex thing, and it is a mistake to assume everything else will stay the same if all you do is insert a change in the transportation mix.  That is why new freeways get crowded so quickly and the race to alleviate congestion by building more freeways never seems to be won.  Better and more congenial transportation attracts residential and commercial development until the new transportation mode is just as crowded as it used to be, and then people go somewhere else to repeat the cycle.

And even more important than alleviating commuting time and headaches is safety.  We are told that once most cars on the road are self-driving ones, that auto accident rates will plummet.  Given the fact that most auto fatalities are due to operator misjudgments and not mechanical failures, I can believe that.  Computers don't get drunk and try to impress their friends with their alcohol-impaired driving skills. 

But as the isolated but well-publicized fatality involving a Tesla quasi-self-driving vehicle showed last May, people can put more trust in a nearly self-driving car than is warranted.  Despite warnings to keep his hands on the wheel when the self-driving feature was engaged, Joshua Brown apparently was watching a video at the wheel of his Tesla when a truck unexpectedly crossed its path, and the system failed to recognize it in time to avoid a fatal crash.  Tesla has since made changes to their system to avoid such problems, but no system is going to be 100% safe no matter how much the software is tweaked. 

What the consumers and the auto insurance industry are waiting for is evidence that over time, truly self-driving cars that require nothing more from the passenger than to sit there and not mess with things, will lead to fewer injuries and deaths than would result if all those people were driving instead of sitting on their hands.  Despite all the self-driving car test drives and public demonstrations of the last few years, we are nowhere near the point at which a reasonably robust statistical study of this type can be made.  And until that time, neither insurers nor the general public will get interested in self-driving cars in a major way.

On the other hand, fleets owned by a single entity and driving in a specific well-mapped area can make real headway, and probably will unless entrenched interests stop them, as existing cab companies are trying to do with unlicensed services. 
The current situation reminds me of a scene I saw recently in a 2003 movie made mostly in Germany.  Some bicyclists come to a railroad crossing with a gate lowered across it.  Now in the U. S., railroad crossings with gates are completely automatic—some track-sensor gizmo lowers the gates when a train passes by and raises them afterwards.  But in this scene, a young man in an elevated booth next to the tracks finally looks up from the book of poetry he's reading and walks over to a crank and turns it by hand to raise the gate. 

There in a nutshell you have the two choices we face regarding self-driving vehicles.  I don't know what combination of union rules and tradition and exaggerated concerns for safety led to preserving the job of crossing-guard keeper in Germany some eighty years after the technology to eliminate that job became available.  But if in 2060, we still have medallioned cabs in Manhattan manually driven by immigrants who can't find a better job and 40,000 traffic deaths a year in the U. S., it won't be because the technology isn't available.  It will be because human organizations and political factors intervened to stifle the change for fifty years.  And if for no other reason than for the sake of those whose lives will be lost to automobile accidents in that time, that would be a shame.

Sources:  Tom Votek's article "At the Los Angeles Auto Show, Industry Ponders Its Digital Future" appeared on Nov. 17, 2016 at  Dr. Hans's blog appears at and is sponsored by Inventivio GmbH of Germany.  A report on the commercial driverless-car taxi service in Singapore appeared at  The movie in which the hand-cranked crossing gate appeared is "Schultze Gets The Blues" released in 2003 and written and directed by Michael Schorr. 

Monday, November 14, 2016

Can Democracy Survive Social Media?

That's the question that Wired reporter Issie Lapowsky raises in a Nov. 12 piece entitled "Facebook Alone Didn't Create Trump—The Click Economy Did."  Like many in the media, Lapowsky wasn't expecting Trump to win.  But she got a hint of what might happen when she spoke in October with a 75-year-old Trump supporter in Ohio who told her a string of crazy stories about the various depravities of Hillary and Bill Clinton.  The source of all these patently false but juicy tales?  Facebook. 

It wasn't just negative rumors that helped Trump win, says Lapowsky, but the way Trump conveyed his anger and outrage through tweets that were picked up by the media so that even non-tweeters like yours truly read about them.  It turns out that certain emotions play better over social media than others, and anger is near the top of the list. 

Once a surprising and unexpected thing happens, it's not hard to find reasons why it happened.  Whatever your political sympathies may be, the outcome of last Tuesday's presidential race shows us that social media are playing an increasing role in the way politics works in democracies such as the U. S.  And the social and ethical implications of that shift are just now beginning to be understood.

Probably the single most important difference between the way social media convey political messages today and the way the old mass media used to do it, is the fact that people now can choose media that agree with their politics.  This includes friends on Facebook, twitter feeds, websites, and even cable TV channels.  Liberals tend to listen to and read other liberals, and ditto for conservatives.  The ability to self-select one's news sources leads most people to shield themselves in comfortable bubbles or echo chambers in which people hear only the kinds of talk they want to hear.

There's nothing new about this, of course.  But for a period of about sixty years—from around 1920 to 1980—most U. S. citizens received their news from sources that were designed to appeal to the widest range of readers and listeners—and viewers, when TV came along.  John Durham Peters is a professor of communication studies at the University of Iowa, and he points out that what he calls the "old mass media" used capital-intensive plant and equipment—printing presses, news organizations such as the Associated Press, and radio and TV networks—and therefore had to make money by appealing to the largest number of people.  They did this by developing so-called "objective journalism" that strenuously avoided partisanship and tried to present an even-handed view of political and social events.  The fact that nearly everyone in the U. S. received their news from only a few news networks, which often sounded alike, imposed a uniformity of viewpoint that was not always good—minority and dissident views were often suppressed—but tended to give everyone the same starting point in political discussions.  It's hard to tell, but we may owe a good deal of the comparative unity and domestic peace within the U. S. for that period to the homogenizing influence of mass media.

The funny thing is that the objective journalism of the twentieth-century mass media was itself something of an anomaly historically.  Before newspapers got big enough to organize and use the Associated Press and similar wire-news organizations for most of their news content, most papers were highly partisan.  Even in small towns, Republicans subscribed to the Republican paper and Democrats to the Democratic paper.  Editors took radical stands and learned to deal with the consequences.  In 1869, Mark Twain penned a humorous but only slightly exaggerated view of life at a nineteenth-century newspaper in a satirical piece called "Journalism in Tennessee."  A substitute editor of a small-town paper starts his first day on the job and gets shot at, bombed, thrown out the window, and subjected to a general riot and insurrection that wrecks the office.  When the chief editor returns from vacation, he hears of these disasters and says nothing more than, "You'll like this place when you get used to it." 

Maybe Facebook and Twitter aren't as physically violent as Tennessee journalism was in 1869, but the verbal equivalent of bullets and bombs fly around social media every day, and the effects are often similar.  In 1960, no responsible newspaper would have knowingly printed false stories that one of the Presidential nominees was getting secret messages in an earpiece from a billionaire during debates and was married to a man who had an illegitimate half-black son.  But that's the kind of thing the Wired reporter heard from the Trump supporter, and the stories came from Facebook. 

Every new communications medium, going all the way back to the electromagnetic telegraph, has been hailed at first as a promising means of unifying people, parties, and nations.  And if people were angels, all these glowing predictions would come true.  But angels don't need to send telegrams or tweets, and the fallible, sinful humans who do use communications media often put them to the worst conceivable purposes. 

This is not a call for censorship or any third-party control of the way people communicate with each other.  We need only to recall how social media have played helpful and positive roles in the overthrow of repressive regimes to realize that authoritarian measures to suppress free speech are harmful to democracy.

But in the wake of last week's election, it wouldn't surprise me to see renewed calls for such restraints, although the political climate will soon change to the point that such calls may fall on deaf ears.  What should concern us more is the bad habit many have of isolating themselves by means of social media to the point that so-called discussions amount to nothing more than a group of like-minded people massaging each others' prejudices.  Politics is the art of compromise, but if you spend all your time talking with people who think just like you, you'll lose the ability to compromise.  And no one else is going to make us get out of our self-created shells.  We have to do that on our own.

Sources:  Issie Lapowsky's article " Facebook Alone Didn't Create Trump—The Click Economy Did" appeared in Wired on Nov. 12, 2016 at  John Durham Peters spoke on the old mass media in an interview with Mars Hill Audio's Ken Myers in Vol. 131 of that online audio journal, available at  And Mark Twain's satirical piece "Journalism in Tennessee" can be found in The Complete Short Stories of Mark Twain (ed. Charles Neider), published by Bantam in 1971.

Monday, November 07, 2016

Can Science and Technology Studies Prevent the Next Engineering Disaster?

"Technology is neutral.  It's only how it's used that can be good or bad." 

Back in the 1960s and even up to the 1970s, a statement along those lines was often the standard response you got from an engineer or scientist if you raised questions about the dangers or moral implications of a given invention.  The neutrality argument was used to defend radio, television, computers, and even nuclear energy.  But Sheila Jasanoff, for one, would disagree.

Jasanoff teaches science and technology studies (STS) at the Harvard Kennedy School.  In an editorial in the October edition of the journal IEEE Spectrum, Jasanoff told chief editor Susan Hassler that there is no such thing as a value-neutral technology.  Hassler was speaking with Jasanoff about her new book, The Ethics of Invention:  Technology and the Human Future (Norton, 2016), in which Jasanoff argues that every technology worthy of the name is designed with some idea of the good in mind.  And we don't get ideas of what is good only from technology itself.  That comes from the wider culture, which invariably informs and shapes the motivations of those who strive to create innovations that will do something that somebody, somewhere will regard as good.  Even the terrorist assembling a kettle bomb in his basement thinks it will be good, in his private sense, if the bomb goes off and kills people.  So in that limited sense, every technology is designed with some good in mind, and while the particular good may be influenced by the technology, it is what the philosophers call "logically prior to" the technology, at least most of the time. 

So far so good.  But then Hassler goes on to say that (STS) programs such as the one Jasanoff teaches in ought to be more closely integrated with the engineering curricula of more schools, as they are already in a few places such as the University of Virginia and Stanford.  Maybe if engineering students were obliged to take in-depth looks at the social implications of technology, and STS students had to study more technical subjects, we could avoid creating monsters that look good in the laboratory or as prototypes, but end up causing disasters once they reach thousands or millions of customers. 

Hassler's position is one I'm in sympathy with.  I spent seven years as an officer of the IEEE's Society on Social Implications of Technology, and in the process met a lot of interesting and thoughtful people who share Jasanoff's concern that, as Hassler puts it, we seem to be stuck on a "hamster wheel of innovation, disaster, and remediation."  In other words, the main way we seem to find out that a given technology can be harmful is not by doing forward-thinking studies while it's still in the planning stages, but by selling it on an industrial scale and then reaping the adverse consequences when they become so obvious that we can't ignore them. 

Hassler complains that most engineering undergrads will lump STS classes in with the other humanities as time-wasting compared to the burdensome technical classes they must take in order to graduate.  And by and large, she's right.  This even goes for the subject that is probably the most prominent educational intersection between engineering and the humanities:  engineering ethics.  Here at Texas State University, philosophy courses are required for every undergraduate student on campus, and engineering and philosophy faculty have worked together to get NSF funding to sponsor an engineering-ethics-specific undergraduate philosophy course.  Hassler also cites Stanford as a place where STS majors have to complete technical requirements as well as humanities requirements.  But I would point out that, unless these humanities students go on to get an advanced technical degree, they are not going to have the influence on real-world innovations that engineering students would have.

I think the basic problem here is not educational, but attitudinal.  The type of person who goes in for an engineering degree likes to think that he or she is going to make a positive difference by helping to create innovative products and services that, yes, are regarded as good by somebody.  The basically optimistic mindset this requires is often at cross-purposes to the mindset required in many STS subjects, which is that of a critical stance.  I'm not saying that all STS people are anti-technologists.  Many of them are former engineers or engineering students whose enthusiasm for their technical studies carried them beyond technical matters to explore the wider social implications of that technology, and remain basically supportive of it. 

But to sustain a career, one must establish a basic point of view, and answer a question like this:  Am I going to join this technical field as a participant and team player, not stopping to question the basic goodness of what I'm doing, but taking reasonable precautions to avoid foreseeable harm?  Or am I going to devote my life to viewing this technology from the outside, observing its effects and consequences on various organizations and groups of people, and thinking and writing about that?  It's not as simple a division as action versus contemplation, but it comes close.  And the fact of the matter is that many of the adverse consequences of certain technologies, such as burning fossil fuels, were such as to be invisible and undetectable until such time as it was way too late to forestall any harm.  Some bad effects simply cannot be discovered until a technology is already in widespread use.

I sympathize with Jasanoff's concern, and Hassler's wish that STS was something that more engineers and scientists knew about.  But I'm not sure that if we just had engineers taking more STS courses and STS majors taking more engineering courses, that the world would be much safer than it is now.

Sources:  Susan Hassler's editorial "STEM Crisis?  What About the STS Crisis?" appeared on p. 9 of the October 2016 North American issue of IEEE Spectrum.  Sheila Jasanoff's book The Ethics of Invention:  Technology and the Human Future was published in 2016 by W. W. Norton & Co.